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Abstract

Effective analysis of raw data from networked systems

requires bridging the semantic gap between the data and

the user’s high-level understanding of the system. The

raw data represents facts about the system state and

analysis involves identifying a set of semantically rel-

evant behaviors, which represent “interesting” relation-

ships between these facts. Current analysis tools, such as

wireshark and splunk, restrict analysis to the low-level

of individual facts and provide limited constructs to aid

users in bridging the semantic gap. Our objective is to

enable semantic analysis at a level closer to the user’s

understanding of the system or process. The key to our

approach is the introduction of a logic-based formulation

of high-level behavior abstractions as a sequence or a

group of related facts. This allows treating behavior rep-

resentations as fundamental analysis primitives, elevat-

ing analysis to a higher semantic-level of abstraction. In

this paper, we propose a behavior-based semantic anal-

ysis framework which provides: (a) a formal language

for modeling high-level assertions over networked sys-

tems data as behavior models, (b) an analysis engine for

extracting instances of user-specified behavior models

from raw data. Our approach emphasizes reuse, com-

posibility and extensibility of abstractions. We demon-

strate the effectiveness of our approach by applying it

to five analyses tasks; modeling a hypothesis on traffic

traces, modeling experiment behavior, modeling a se-

curity threat, modeling dynamic change and composing

higher-level models. Finally, we discuss the performance

of our framework in terms of behavior complexity and

number of input records.
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1 Introduction

The ability to convert raw data into higher-level in-

sights and understanding has become a key enabler in

many fields. We approach one particular aspect of this

problem, namely the analysis of data within the domain

of networked and distributed systems. Such systems rou-

tinely generate a plethora of logs, trace and audit data

during their operation. Users, such as researchers and

system administrators, use this raw data to understand

system behavior, diagnose problems, discover new be-

haviors, or verify hypotheses. Effective analysis of such

raw data requires bridging the semantic gap between raw

data and the user’s high-level understanding of the anal-

ysis domain. Our experience with analysis tools reveals

that this problem is ill-addressed.

A typical approach to data analysis involves the user

sifting through the data using simple search and correla-

tion constructs like boolean queries to identify relation-

ships and infer meaning from data. For example, wire-

shark [19] can help identify complete or incomplete TCP

flows from packet traces and splunk [16] can help iden-

tify spurious logins from a server log. Our study of four

popular tools, discussed in Section 2.1, reveals that cur-

rent approaches require cumbersome multi-step analyses

to infer semantic relationships from data. For example,

a user analyzing a network packet trace may first have to

extract individual flows by specifying specific attribute

values related to each flow, and then somehow manually

infer relationships like concurrency between the flows.

This problem is further complicated if the user has to

reason and analyze over multiple types of data. This sep-

aration between the raw data and the meaning it carries

constitutes the semantic gap.

In this paper, we focus on the problem of express-

ing analyses tasks that are meaningful and useful to the

user. Specifically, given a finite, timestamped list of facts

about the system under observation, our objective is to

assist the user in expressing and modeling semantically



relevant behaviors, which are “interesting” relationships

between these facts or sequence of facts. These relation-

ships encompass notions of ordering, causality, depen-

dence, or concurrency.

Our insight is that higher-level understanding in net-

worked and distributed systems can be expressed in the

form of relationships between system states, simple be-

haviors, and complex behaviors. For example, in most

situations, a typical web-server operation is better un-

derstood as a concurrent relationship between multiple

HTTP sessions to a server rather than the details of the

protocols and specific values in the packet headers. Thus,

our data analysis approach introduces a behavior as a

primitive analysis construct. Behaviors can be extended

or constrained to create a behavior model, which forms

an assertion about the overall behavior of the system. A

behavior model can then be rapidly applied over data to

validate the assertion. We discuss complete details about

specifying behavior models in Section 3, and Section 4

presents the analysis engine for extracting instances of

user-specified behavior models from raw data.

The behavior models are abstract entities to capture

the semantic essence of a particular relationship without

focusing on unnecessary details or particular parameters

that may vary between individual facts or behaviors. In-

corporation of abstract behavior models as explicitly rep-

resented and manipulated constructs within our frame-

work provides two key benefits. First, this abstraction

allows users of our framework to analyze and understand

the raw data at a semantically relevant level. In Sec-

tion 3.4, we introduce an example of a behavior model

to identify pairs of communication events where the des-

tination IP of the second event is same as the source IP of

the first. Such models can be used to analyze many dif-

ferent datasets without any modification. Additionally,

since behavior models are primitive analysis constructs,

the framework supports extensibility by composing new

models from behavior models present in the knowledge

base as demonstrated in Section 5.5. Thus, represent-

ing analysis expertise explicitly as behavior models for-

malizes the semantics for data analysis in networked sys-

tems.

The second key benefit of our work is the ability to

foster sharing and reuse of knowledge embedded in ex-

plicitly represented behavior models. Our first-hand ex-

perience with existing tools suggests that in most cases

knowledge inferred from analysis resides either in a

domain-specific tool or a single expert’s brain. This is

due to a lack of an explicit representation for captur-

ing, storing, sharing, and reusing such knowledge in a

context-independent way. Many current tools are either

static in nature, handling only a fixed set of analyses

and record types, or may offer limited extensibility, but

through some mechanism that involves significant effort.

For example, wireshark [19] is easily extensible using

plugins, but writing a plugin requires understanding the

wireshark API and C programming skills. In contrast,

a well defined shareable format for representing knowl-

edge about networked systems data offers the prospect

that many different tools can be driven by, and contribute

to, a single shared knowledge base.

Beyond the basic challenge, the task of semantic-level

analysis is difficult for two disparate reasons. First, the

definition of “interesting” may vary widely in different

situations, requiring a rich toolbox of techniques for ef-

fective analysis. We address this problem by restricting

the definition of “interesting relationships” to expressing

a particular set of characteristics of networked systems

as discussed in Section 3.1. Second, in large scale sys-

tems, efficient and intelligent data analysis is extremely

resource intensive due to the sheer volume of system

events and traces. While in Section 6 we report perfor-

mance results, this paper primarily discusses the funda-

mental aspects of defining and employing explicit behav-

ior models as a data analysis tool. Real-time analysis of

data for applications such as intrusion detection is a fu-

ture goal as discussed in Section 7.

The fundamental contribution of this paper is the in-

troduction of a behavior-based semantic analysis frame-

work for confirmatory and exploratory analysis of multi-

variate, multi-type, timestamped data captured from net-

worked systems. The main elements of the semantic

framework include (a) a specialized formal language for

specifying behavior models and (b) an analysis engine

for extracting instances of user-specified behavior mod-

els from data. In confirmatory analysis, the user specifies

a validation criteria, expected system behavior or hypoth-

esis, by writing a specific model or through composing a

high-level model from existing models contained within

the knowledge base of the framework. In exploratory

analysis, a user applies existing models from the knowl-

edge base to explore data for new or unanticipated be-

haviors. In Section 5 we present five detailed examples

of how the framework can be applied for these data anal-

ysis tasks.

2 Related Work

In this section, we set the context for our work by first

studying four popular analysis tools followed by a dis-

cussion on specification-based approaches for analysis of

networked systems data.

2.1 Tool Comparison

In this section, we study four popular analysis method-

ologies: wireshark v1.2.7 [19], splunk v4.1 [16], Simple

Event Correlator (SEC) v2.5.3 [18], Bro v1.5.2 [14], and

compare them with our behavior-based semantic anal-

ysis framework (SAF). Both wireshark and splunk are
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wireshark splunk SEC Bro SAF

System goals Interactive

analysis

Interactive analysis Real-time event

correlation

High-speed, real-time

monitoring

Interactive analysis

Input data Network packets Ascii data from any

source

Ascii data from files,

stdin, pipes

Network packets Any type of data (with

plugin)

Specification

language

Boolean logic Boolean logic Simple language for

specifying rules

Bro scripting language Formal language based

on temporal logic,

interval temporal logic

and boolean logic

Primitive

constructs

Boolean

predicates

Boolean predicates,

unix-like pipelines

and commands

Boolean predicates,

functions written in

Perl

Events (low-level or

higher-level)

Behavior (low-level or

higher-level)

Semantic

constructs

None External commands

can encode

semantics

Perl functions can

encode semantics

Network notions such

as connections, IP

addrs., ports, and

network protocols

Temporal logic and

interval temporal logic

operators for defining

behaviors (Section 3)

Composibility

of specs

None Queries can be

recorded and then

composed into other

queries

Matching events can

trigger creation of new

high-level events

Policies can compose

lower-level events to

generate higher-level

events

Behaviors can be

composed into higher

level behaviors

Abstraction None None Limited Yes Yes

Table 1: Comparison of the behavior-based Semantic Analysis Framework (SAF) with four popular data analysis tools.

mainly interactive analysis tools while Bro and SEC are

real-time monitoring tools. The behavior-based semantic

analysis framework (SAF) falls in the category of inter-

active analysis tools. The tools are compared along seven

dimensions in Table 1; (a) high-level goals, (b) input data

types, (c) analysis specification language (d) primitive

analysis constructs, (e) semantic analysis constructs, (f)

ability to compose specifications and (g) abstraction, that

is, specifications in terms of relationships between data

attributes.

Each paragraph below introduces an analysis frame-

work and the reader is directed to Table 1 for details. The

corresponding features for our framework (SAF) are in-

troduced in Table 1 and explored in future sections. We

have not considered SQL-based approaches on stream-

ing data for comparison [6], since SAF representations

are at a higher-level of abstraction than database query

languages. However, we further discuss how our frame-

work could benefit by using the above SQL extensions to

optimize event storage and retrieval in Section 7.

wireshark [19] is an open-source tool for interactive

analysis of a large variety of network data from a packet

capture file. Wireshark’s design can be separated into

the analysis framework and plugins. The analysis frame-

work provides the ability to sift through large volumes

of packets visually and provides a boolean query gram-

mar for finding “interesting” relationships and statistical

summaries over typical networking concepts, for exam-

ple, rate, flows, bytes, and connections. The plugin archi-

tecture, on the other hand, is responsible for normalizing

and presenting different types of packet data and protocol

behavior to the analysis framework in a uniform way.

splunk [16] is a popular commercial framework for

unified data analysis of a large variety of data. Splunk’s

strength comes from its ability to index various types of

data, allowing the user to sift through logs by combin-

ing search queries using boolean operations, pipes and

powerful statistical and aggregation functions. Splunk

supports time-based, event-based, value-based correla-

tions and also allows combining queries into higher-level

queries. Splunk is extensible using apps, which allow en-

coding knowledge as queries for sharing and wider dis-

semination. However, it does not provide support for ex-

plicitly capturing domain expertise with semantic con-

structs. It does provide the ability to invoke external

commands, thus providing an indirect way to incorpo-

rate explicit domain expertise into the analyses.

Simple Event Correlator(SEC) [18] is an open-

source framework for rule-based event correlation. SEC

reads the analysis specifications from a configuration file

containing a set of event matching rules and correspond-

ing actions. SEC processes data from log files, pipes and

standard streams to trigger the configured actions on a

match. It supports both time-based and event-based cor-

relations and also allows specifying abstract rules that

bind their values at runtime. SEC is more sophisti-

cated than the previous two tools, it supports composing

higher-level events by correlating low-level events, pro-

viding a framework for semantic understanding. Its rule-

types pair and pairwithwindow capture some of the se-

mantics of ordering and duration. However, it lacks sup-

port for inferring interval-based temporal relationships

like concurrency and overlap and the analysis specifica-

tion in the configuration files are not intuitive to capture

3



and share domain expertise in a generic way.

Bro [14] is a high-speed intrusion detection system for

checking security policy violations by passively moni-

toring network traffic in real-time. Bro’s security poli-

cies are written in the specialized Bro scripting language

which is geared towards security analysis. The lan-

guage supports semantic constructs such as connections,

IP addresses, ports, and various network protocols along

with various operators and functions to express different

forms of network analyses. Bro has the ability to do time-

based and event-based correlation. However, Bro mainly

processes network packet data and uses a programming

language-based analysis approach.

2.2 Specification-based Approaches

Specification-based approaches are particularly appeal-

ing in various areas of networked and distributed systems

due to their ability to be abstract, concise, precise, and

verifiable. In formal verification of distributed and con-

current systems, a system is specified in logic and then

formal reasoning is applied on the specification to ver-

ify desired properties [3, 9]. In declarative networking, a

specification language, Network Datalog (NDLog) [10],

allows defining high-level networking specifications for

rapidly specifying, modeling, implementing, and experi-

menting with evolving designs for network architectures.

In testbed-based experimentation, a simple set of user-

supplied expectations are used to validate expected be-

havior of an experiment [12].

The formal specification approaches have been well

developed within the intrusion detection community and

have been successfully applied to network and audit data

for analysis. In this section we first present a brief

overview of four such approaches and then compare

them to SAF.

Roger et al. [15], leverage the idea that attack signa-

tures are best expressed in simple temporal logic using

temporal connectives to express ordering of events. They

pose the detection problem as a model-checking prob-

lem against event logs. Naldurg et al. [13], propose an-

other temporal-logic based approach for real-time mon-

itoring and detection. Their language EAGLE supports

parameterized recursive equations and allows specifying

signatures with complex temporal event patterns along

with properties involving real-time, statistics and data

values. Kinder et al. [8], extend the logic CTL (Computa-

tion Tree Logic) and introduce CTPL (Computation Tree

Predicate Logic) to describe malicious code as a high-

level specification. Their approach allows writing spec-

ifications that capture malware variants. Ellis et al. [4],

introduce a behavioral detection approach to malware by

focusing on detecting patterns at higher-level of abstrac-

tions. They introduce three high-level behavioral signa-

tures which have the ability to detect classes of worms

without needing any apriori information of the worm be-

havior.

The SAF abstract models are comparable to the ap-

proaches of [13, 8, 4] in their use of formal logic and

temporal constructs for specifications. But, in addition

to providing an extended set of sophisticated intuitive op-

erators and constructs, the behavior models presented in

this paper can be generically applied to model various

scenarios over a variety of data and are easily composed

into semantically relevant higher-level models. This al-

lows creating a knowledge base to explicitly capture do-

main expertise required for analyzing a large variety of

operations encountered in networked and distributed sys-

tems as shown in Section 5. The higher-level behav-

ioral signatures [4] based on the network-theoretic ab-

stract communication network (ACN) are tightly bound

to networking constructs like hosts, routers, sensors and

links making them very restrictive in their ability to ex-

press general networked systems behaviors.

The SAF is based on a logic-based specification ap-

proach rather than a programming language-based spec-

ification approach like the one followed in Bro. Our

goal is that the behavior models should be abstract but

also concise and precise to support well-known knowl-

edge representation and reasoning approaches. Logic

is declarative and type-free, imparting formal seman-

tics, abstract specifications, and efficient processing by

analysis engines. The logic-based approach also enables

building a knowledge base of behavior models to explic-

itly capture domain expertise that can be used to auto-

matically reason and infer behavior models. However,

logic-based approaches are less expressive than program-

ming languages. The expressiveness of our approach

is based on requirements derived from characteristics of

networked systems as discussed in Section 3.1.

3 Behavior Models

A particular execution of a networked system or process

can be captured as a sequence of states, where a state

is a collection of attributes and their values. A behav-

ior (b) is a sequence of one or more related states. A

system execution is thus defined as a combination of dif-

ferent behaviors, and each new execution may generate

a unique set of behaviors. A behavior model (φ) is a for-

mula that makes an assertion about the overall behavior

of the system.

For example, consider a simplified IP flow in net-

working, where a flow is a communication between two

hosts identified by their IP addresses. For simplicity

we assume an IP flow to be broken into two states:

ip s2d denotes a packet from some source to destina-

tion host and ip d2s denotes a packet from a destination

to source. Then, a valid IP flow behavior, IPFLOW, is

one where ip s2d and ip d2s are related by their source
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and destination attributes with the additional criteria that

ip d2s always occurs after ip s2d. The behavior model

(φipflow) is an assertion that IPFLOW is valid. We dis-

cuss details of this example and extend it further in Sec-

tion 3.4.

In this section, we first discuss the requirements and

design choices for a language to specify behaviors fol-

lowed by the formal syntax and semantics of the lan-

guage.

3.1 Requirements

As discussed in Section 1, the key objective of our frame-

work is to enable semantic-level analysis over data. A

semantically expressive language for analysis over net-

worked and distributed systems data must meet the fol-

lowing requirements: (a) enable analysis over multi-

type, multi-variate, timestamped data, (b) express a wide

variety of “interesting” relationships, (c) enable analysis

over higher-level abstractions, and (d) enable composing

abstractions into higher-level abstractions.

The language should express at-least the following

“interesting” relationships to capture the core character-

istics of networked and distributed systems: (a) causal

relationships between behaviors, for example, a file be-

ing opened only if a user is authorized; (b) partial or to-

tal ordering, for example, in-order or out-of-order arrival

of packets; (c) dynamic changes over time, for example,

traffic between client and server drops after an attack on

the server; (d) concurrency of operations, for example,

simultaneous web client sessions; (e) multiple possible

behaviors, for example, a polymorphic worm behavior

may vary on each execution; (f) synchronous or asyn-

chronous operations, for example, some operations need

to complete within a specific time whereas others need

not; (g) value dependencies between operations, for ex-

ample, a TCP flow is valid only if the attribute–values

contained in the individual packets are related to each

other; (h) invariant operations, for example, some opera-

tions may always hold true and, (i) eventual operations,

for example, some operations happen in the course of

time. In addition, we need traditional mechanisms, such

as boolean operators and loops, for combining these re-

lationships into complex behaviors and mechanisms for

basic counting of events and reasoning over the counts.

We do not claim completeness of the above require-

ments but we believe that being able to express the above

classes of primitive relationships and combining them

to form complex relationships would suffice for a wide

range of situations, a few of which we demonstrate as

case studies in Section 5.

3.2 Design

The following four design decisions realize the require-

ments listed above. First, our framework provides logic-

based support to formulate behavior abstractions as a se-

quence or group of related events, where events are uni-

form representation of system facts as discussed later.

This formulation allows treating this behavior represen-

tation as fundamental analysis primitive, elevating anal-

yses to a higher semantic-level of abstraction.

Second, the language combines operators fromAllen’s

interval-temporal logic [1], Lamport’s Temporal Logic

of Actions [9] and boolean logic. Temporal logic allows

expressing the ordering of events in time without explic-

itly introducing time. Interval-temporal logic allows ex-

pressing relationships like concurrency, overlap and or-

dering between behaviors as relationships between their

time-intervals. Additionally, complex behaviors are eas-

ily composed from simpler ones using boolean operators.

Third, the framework enables specifying dependency

relationships between event attributes while leaving the

values to be dynamically populated at runtime. Late

binding enables abstract specifications that enrich the

knowledge base as they can be directly applied to a wide

variety of data-sets. This also enables parametrization of

models during complex model composition as discussed

in Section 5.5.

Lastly, the framework introduces the notion of a

domain-independent event as a uniform representation

of multi-type, multi-variate, timestamped data. Specif-

ically, an event (e) is a representation of system state

and is given by a 4-tuple 〈o, c, t, av〉 where o is the

event-origin (for example, the host IP), c is the event-

type (for example, PKT TCP or APP HTTPD), t is the

event timestamp and av = { 〈ai, vi〉 | ai ∈ A , vi ∈
Strings , 1 ≤ i ≤ Dc } are the attribute-value pairs con-

tained in the event. A is the set of attribute labels, for ex-

ample, sip, dip, etype. Dc is the number of attributes in

an event of type c. This normalization of data to events

ensures that the analysis algorithms are independent of

the input domain.

We believe these design decisions ensure developing

abstract behavior models as first-order primitives for cap-

turing, storing, and reusing domain expertise for the anal-

ysis of networked systems. Next we discuss the syntax

of such a language.

3.3 Syntax

The language grammar for defining a behavior model

φ as a formula, consists of five key elements as shown

in Figure 1: state propositions S as atomic formulae;

grouping operators ‘(’ and ‘)’ to define sub-formulae;

logical operators and temporal operators for relating

sub-formulae or atomic-formulae; the optional behavior

constraints bcon and operator constraints opcon written

within ‘[’ and ‘]’; and the relational operators relop.

A state proposition, S, is an atomic formula for cap-

turing events that satisfy specified relations between at-
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φ ::= ‘(’ S |φ ‘)’ { bcon }
| notφ (negation)
| φ and φ (logical and)
| φ or φ (logical or)
| φ xor φ (logical xor)
| φ (opcon) φ (leadsto)
| �(opcon) φ (always)
| φ olap(opcon) φ (overlaps)

| φ dur(opcon) φ (during)
| φ sw(opcon) φ (startswith)
| φ ew(opcon) φ (endswith)
| φ eq(opcon) φ (equals)

bcon ::= ‘[’ {tc | cc} ‘]’
tc ::= {at | duration | end} relop t{: t}
cc ::= {icount | bcount | rate} relop c{: c}

opcon ::= ‘[’ relop t{: t} ‘]’
relop ::= {> |< |= | ≥ |≤ | 6= }

t ::= [0− 9] + {s|ms}
c ::= [0− 9]+

Figure 1: The grammar for specifying a behavior model φ.

tributes and their values. In essence, S captures states of

a system or process and is the basic element of a behav-

ior model. The most trivial behavior model is one with a

single state proposition. Formally, S is represented as a

finite collection of related attribute-value tuples as:

S = {(ai, ri, vi) | i ∈ N, ai ∈ A, vi ∈ V,

ri ∈ (=, >, <, ≥, ≤, 6=)}

A is a set of string labels, such as sip, dip,

etype and V is a set of string constants, such as

10.1.1.2,/bin/sh, along with two special strings: (a)

strings prefixed with ‘$’, as in $$,$s2.dst (b) strings

with the wild-card character ‘*’, as in /etc/pas*. Con-

sidering our previous example of IPFLOW, the state

propositions ip s2d and ip d2s are written as:

ip s2d = {etype=PKT IP, sip=$$,dip=$$}

ip d2s = {etype=PKT IP,sip=$ip s2d.dip,

dip=$ip s2d.sip}

State proposition ip s2d contains three attributes

etype, sip and dip. etype has a constant value

PKT IP, while sip and dip attributes use the ‘$’ pre-

fixed special variables which are dynamically bound at

runtime. State proposition ip d2s defines the values of

its sip and dip attributes as being dependent on val-

ues of state ip s2d. Dependent attributes along with dy-

namic binding of values allows leaving out details like

the actual IP addresses from the specification.

The temporal operators allow expressing temporal re-

lationships like ordering and concurrency between one-

or-more behaviors. The linear-time temporal operator 

(leadsto), written as ∼>, is used to express causal rela-

tionships between behaviors. The interval temporal logic

operators express concurrent relationships between be-

haviors as either relationships: (a) between their start-

times using sw (startswith), (b) between their endtimes

using ew (endswith) or (c) between their durations using

olap (overlap), eq (equals) and dur (during). The �

(always) operator, written as [ ], allows expressing invari-
ant behaviors. The logical operators not, and, or, xor

are supported for logical operations over behaviors and

for creating complex behaviors.

Behavior constraints allow placing additional con-

straints on the matching behavior instances and are spec-

ified immediately following the behavior within square

brackets. Constraints and their values are related using

the standard relational operators. The six behavior con-

straints are divided as time constraints tc and count con-

straints cc. Time constraints allow constraining behav-

ior starttime using at, behavior endtime using end and

behavior duration using duration. The time value, t,

for the constraint can be specified as a single positive

value or as a range. Additionally, the values can be suf-

fixed with either ‘s’ or ‘ms’ to indicate seconds or mil-

liseconds respectively. The count constraints allow con-

straining number of matching behavior instances using

icount, the size of each behavior instance using bcount

and rate of events within a behavior instance using rate.

Operator constraints allow specifying time bounds over

the temporal operators thus allowing their semantics to

be slightly modified. The operator constraint values are

specified as a single value or a range along with a rela-

tional operator. Table 2 presents detailed semantics of

operators along with behavior and operator constraints.

Expressing a behavior in the language constitutes writ-

ing sub-formulae. Behaviors are always enclosed within

parenthesis ‘(’ and ’)’. Simple behaviors are constructed

by relating one-or-more state propositions using opera-

tors, while complex behaviors are constructed by relat-

ing one-or-more behaviors. The grammar also allows

expressing complex behaviors using recursion and we

present an example in Section 5.3. Recursive definitions

allow expressing looping behavior for which the loop

bounds can be optionally specified using the bcount be-

havior constraint. The current grammar does not support

existential and universal quantification since such a need

is not clear. We explore these language extensions as part

of our future work.

Writing behavior models in the framework involves

additional syntax such as namespaces, headers and vari-

ables which are discussed along with the case-studies in

Section 5.1 and Section 5.2. Next section presents the

formal semantics of the language.

3.4 Semantics

We first define two concepts important for understanding

the semantics. A sequential log (L) is a finite sequence
of timestamped events L = e1, e2, e3, . . . , en such that

ei.t ≤ ej .t , ∀ i < j. A behavior instance Bφ for a be-

havior model φ is sequence or groups of events satisfying
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Behavior model ψ Meaning of ψ L satisfies ψ (L |= ψ) iff
(φ) φ is a behavior. ∃Bφ ⊆ L and |Bφ| > 0

S S is a state proposition defined as

S = {(a1, r1, v1) . . ., (ad, rd, vd)}.
(a) |BS | > 0, (b) ∀ e ∈ BS , ∀ i ∈ {1, . . . , d}, e.ai
is defined and values e.vi and S.vi satisfy relation ri.

(negφ) Negation of behavior is true. L 6|= φ, that is, |Bφ| = 0

(φ1 andφ2) Both φ1 and φ2 are true. L |= φ1 and L |= φ2

(φ1 orφ2) φ1 and φ2 are not both false simultaneously. L |= φ1 or L |= φ1 or satisfies both φ1 and φ2

(φ1 xorφ2) Either of φ1 or φ2 are true but not both. L |= φ1 or L |= φ2 but not both

(φ1  φ2) φ1 leadsto φ2, that is, whenever φ1 is satisfied φ2 will

eventually be satisfied.

(a) L |= φ1 and L |= φ2, (b) Bφ1
[1] 6= Bφ2

[1], (c)
Bφ2

.starttime ≥ Bφ1
.endtime

(φ1  [≤ t]φ2) Whenever φ1 is satisfied φ2 will be satisfied within t
time units.

(a) L |= (φ1  φ2), (b)
Bφ2

.starttime ≤ (Bφ1
.endtime+ t)

(�φ) φ is always satisfied, that is, satisfied by each event. ∀ e ∈ L, e |= φ

(�[= t]φ) φ is always satisfied within every consecutive

interval(epoch) of t time units.

t > 0 and for all consecutive intervals t, lt ⊆ L and

lt |= φ

(φ1 swφ2) φ1 starts with φ2. (a) L |= φ1 and L |= φ2, (b) Bφ1
[1] 6= Bφ2

[1], (c)
Bφ1

.starttime = Bφ2
.starttime

(φ1 sw[≥ t]φ2) φ1 starts t time units after φ2. (a) L |= (φ1 swφ2), (b)
Bφ1

.starttime ≥ (Bφ2
.starttime+ t)

(φ1 ewφ2) φ1 ends with φ2. (a) L |= φ1 and L |= φ2, (b) Bφ1
[1] 6= Bφ2

[1], (c)
Bφ1

.endtime = Bφ2
.endtime

(φ1 ew[= t]φ2) φ1 ends t time units after φ2. (a) L |= (φ1 ewφ2), (b)
Bφ1

.endtime = (Bφ2
.endtime+ t)

(φ1 olapφ2) φ1 overlaps φ2, that is, φ1 starts after φ2 starts but

before φ2 ends and ends after φ2 ends.

(a) L |= φ1 and L |= φ2, (b) Bφ1
[1] 6= Bφ2

[1], (c)
(Bφ2

.starttime < Bφ1
.starttime <

Bφ2
.endtime) and

(Bφ1
.endtime > Bφ2

.endtime)

(φ1 olap[> t]φ2) φ1 overlaps φ2 and the overlapping region is greater

than t time units.

(a) L |= (φ1 olapφ2), (b) the overlap
(Bφ2

.endtime−Bφ1
.starttime) > t

(φ1 eqφ2) φ1 equals φ2 in duration. (a) L |= φ1 and L |= φ2, (b) Bφ1
[1] 6= Bφ2

[1], (c)
Bφ1

.duration = Bφ2
.duration

(φ1 eq[= t]φ2) φ1 and φ2 are both of duration t. (a) L |= (φ1 eqφ2), (b)
Bφ1

.duration = Bφ2
.duration = t

(φ1 durφ2) φ1 occurs during φ2, that is, φ1 starts after φ2 and

ends before φ2 ends.

(a) L |= φ1 and L |= φ2, (b) Bφ1
[1] 6= Bφ2

[1], (c)
(Bφ1

.starttime > Bφ2
.starttime) and

(Bφ1
.endtime < Bφ2

.endtime)

(φ1 dur[= t1 : t2]φ2) φ1 occurs during φ2 with duration between t1 and t2. (a) L |= (φ1 durφ2), (b) (t1 ≤ Bφ1
.duration ≤ t2)

(φ)[icount = c] The number of behavior instances satisfying φ is c. (a) L |= φ, (b) there exist distinct B1
φ
. . . Bc

φ
⊆ L

(φ)[bcount = c] Behavior instances satisfying φ are of size c. (a) L |= φ, (b) Bφ.bcount = c
(φ)[rate > c] Behavior instances satisfying φ have a rate, defined as

(behavior size / behavior duration) greater than c.
(a) L |= φ, (b) (Bφ.bcount/Bφ.duration) > c and
Bφ.duration > 0

(φ)[at < t] Starting time of behavior instances satisfying φ must

be less than absolute time t.
(a) L |= φ, (b) Bφ.starttime < t

(φ)[end ≥ t] Behavior instances satisfying φ have endtime greater

than absolute time t.
(a) L |= φ, (b) Bφ.endtime ≥ t

(φ)[duration 6= t] Behavior instances satisfying φ are of duration 6= t. (a) L |= φ, (b) Bφ.duration 6= t

Table 2: Semantics of operators, behavior constraints and operator constraints in our logic. We describe semantics for constraints considering only

a single relational operator and refer the reader to the framework webpage [17] for details.

the behavior model φ.

Bφ = 〈starttime, endtime, bcount, (b1, b2, . . . , bk)〉

where (b1, b2, . . . , bk) ⊆ L could be an individual

event e or another behavior-instance Bφi
. starttime =

b1.starttime is the starting time of the behavior as de-

fined by its first element and endtime = bk.endtime

is the ending time of the behavior as defined by its last

element. bcount = k is the total number of elements

in the behavior instance. All bi’s are in increasing time-

order of their starttime. Additionally, let Bφ.duration

= (Bφ.endtime − Bφ.startime) be the duration of the

behavior instance and |Bφ| = Bφ.bcount represent the

size of behavior instance. If φ is a simple behavior, such

as a state proposition S, then

Bs = 〈ei1 .t, eik .t, k, (ei1 , . . . , eik )〉

7
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Figure 2: Sequence diagram of IP-interaction between four nodes. →
or← represent an IP packet between a source (s) and destination (d).
An IP flow is a packet pair between s and d.

where (ei1 , . . . , eik) ⊆ L.

Given a finite sequential log L and a user-defined be-

havior model φ, goal of the analysis is to find all behavior

instances (B1

φ, B
2

φ, . . .) from L that satisfy the behavior

model, where satisfiability is defined as follows:

L |= φ iff ∃Bφ ⊆ L and |Bφ| > 0

That is, the log L satisfies (|=) the behavior model φ iff

there exists a behavior instance Bφ in L of finite length

|Bφ|. Since φ is a composite formula created using many

sub-formulas, the satisfiability of φ is determined as a

function of satisfiability of its sub-formulae. Table 2 de-

fines the satisfiability criteria for sub-formulae formed

using the operators and constraints. We next explain the

key language ideas by defining simple models and apply-

ing them to a fictitious data set.

Assume a packet trace of seven IP packets represent-

ing an interaction between four nodes A, B, C and D as

shown in Figure 2. Let the sequential log of correspond-

ing events be e1, e2, . . . , e7.

Using the states ip s2d and ip d2s defined earlier

in Section 3.3, IP flow behavior is written as a causal

relationship between the state propositions ip s2d and

ip d2s as IPFLOW=(ip s2d  ip d2s). There are

three IP flow instances in Figure 2 that satisfy IPFLOW,

that is, icount = 3 with bcount = 2 for each instance:

B1
ipflow = (e1, e7)

B2
ipflow = (e2, e5)

B3
ipflow = (e3, e4)

Extending the example, a complex behavior for

pairs of overlapping IP flows can now be written as

IPFLOW PAIRS=(IPFLOW olap IPFLOW). There are

in all three instances of overlapping IPFLOW pairs from

Figure 2. That is,

B1
ipflow pairs = ((e1, e7), (e2, e5))

B2
ipflow pairs = ((e1, e7), (e3, e4))

B3
ipflow pairs = ((e2, e5), (e3, e4))

Again, icount = 3 and for each instance bcount = 2,
since bcount counts the number of IPFLOW occurrences

and not individual events.

We can additionally define a bad IP flow behav-

ior BAD IPFLOW as one for which there was no

matching response from the destination. That is,

BAD IPFLOW=(ip s2d  (not ip d2s)). Event

e6 matches BAD IPFLOW model since it has no matching

response. That is, B1

bad ipflow = (e6), with bcount = 1.
The next section describes the architecture of the anal-

ysis framework.

4 Semantic Analysis Framework

Given our objective of semantic-level data analysis, we

require the analysis framework to support (a) analysis

of multi-type, multi-variate, timestamped data, (b) defin-

ing new models by composing existing models, and (c)

storage, retrieval and extensibility of domain-specific be-

havior models. The framework has five components as

shown in Figure 3; the knowledge base, a data normal-

izer, an event storage system, an analysis engine and a

presentation engine. The decoupling of behavior model

specification, the input processing and the analysis al-

gorithms, allows the framework to be directly applied

across several different domains. Subsequent sections

discuss the details of each component.

4.1 Knowledge Base

The knowledge base provides a namespace-based stor-

age mechanism to store behavior models and is central

in providing an extensible framework. For example, our

networking domain currently defines models for ipflow,

tcpflow, icmpflow and udpflow. These behavior models

capture common domain information and allow a user

to rapidly compose higher-level models by reusing exist-

ing behavior models. Reusing a behavior model from the

knowledge base constitutes importing it using its names-

pace and name. For example, referring to the behavior

model in Figure 4(a), line 5 imports the IPFLOW model

from the NET.BASE PROTO domain. The namespace al-

lows categorization of models into domain-specific areas

while allowing composition of models across domains.

We implement namespaces similar to Java namespaces,

that is, each component in the namespace corresponds to

a directory name on the filesystem. This simple design

ensures that the knowledge base is easily customizable

and extensible.

4.2 Data Normalizer

The data normalizer maps a data record to the event for-

mat defined in Section 3.2. Raw data accepted by the nor-

malizer can be in the form or trace files, packet dumps,

audit logs, security logs, syslogs, kernel logs or script

output with the only requirement that each data record

have a timestamp and a message field. Specialized plug-

ins in the normalizer convert each type of raw data into

corresponding events. Figure 3(b) shows a possible event

8
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Figure 3: The semantic analysis framework (SAF) captures a user’s higher-level analysis intent as (a) a behavior model, applies the model over (b)

a finite stream of events normalized from raw data, and (c) outputs events satisfying the behavior model.

format for an IP packet from a packet dump. The current

normalizer supports a C-based plugin API for writing

new specialized plugins. The framework includes plu-

gins for the basic packet-types of IP, TCP, UDP, ICMP,

DNS along with plugins for parsing syslog, auth and

server logs.

4.3 Event Storage

The event storage component is responsible for storing

the events from the data normalizer into a database. Ev-

ery event-type has a separate table, the columns of the

tables correspond to the event attributes and each row

describes an event. The current implementation stores

all events into a SQLite database for two reasons: (a) it

provides a standard and ready-to-use interface for stor-

ing and fetching events and (b) its server-less operation

and open-source nature ensures portability on commod-

ity systems. Our experience suggests that SQLite per-

forms reasonably well for a large number of situations

but presents challenges for complex analysis as the vol-

ume of events increases. Our future work includes inves-

tigating the scale and efficiency challenges involved in

storage and retrieval of events.

4.4 Analysis and Presentation Engine

Given a finite sequential log L and a user-defined behav-

ior model φ, goal of the analysis engine is to find all be-

havior instances (B1

φ, B
2

φ, . . .) from L that satisfy the be-

havior model. Let the events in L be stored internally in

the event storage database Edb. We discuss only the key

ideas behind the analysis process by describing extrac-

tion of behavior instances satisfying the IPFLOW model

defined in Section 3.4 from the sample data in Figure 2.

The behavior model φ is first internally represented

in a manner similar to a compiler expression-tree and

is then evaluated left-to-right in a post-order fashion.

The satisfiability of the behavior model is determined

as a function of satisfiability of each of the compo-

nent behaviors according to the semantics defined in

Table 2. For the IPFLOW model, the state proposition

ip s2d={etype=PKT IP,sip=$$,dip=$$} is evalu-

ated first. Since it does not have any dependent at-

tributes, its expression is converted to the following

query {etype=PKT IP,sip=*,dip=*} and is used to

fetch all events in Edb matching the query. All events

(e1, e2, e3, e4, e5, e6, e7) match the state ip s2d.

Next, the proposition ip d2s={etype=PKT IP,

sip=$ip s2d.dip, dip=$ip s2d.sip} is evaluated.

The attributes depend on the attributes of state ip s2d.

So, using each event that matched ip s2d, a correspond-

ing query is generated by resolving the values of sip and

dip using the values from the matched events. From Fig-

ure 2, e1 matches e7, e2 matches e5, e3 matches e4. e5
and e6 are also possible candidates but since e5 already

matched e2, it is not paired with e6. Finally, the oper-

ator  is evaluated, where the satisfiability criteria de-

scribed in Table 2 is applied and any specified operator

constraints are checked. The three instances satisfying

the criteria (e1,e7), (e2, e5), and (e3,e4) are returned.

9



The presentation engine is responsible for extracting

the output from the analysis stage and presenting it in a

summarized format. We currently support printing the

output in a tabular format as shown in Figure 3(c). We

next present a brief analysis of the algorithm.

Algorithm Analysis As described in Section 3.3,

state propositions could either contain constant attribute-

values (cStates), such as 10.1.1.2; dependent values

(dStates), such as $s1.dip; or dynamic values (iStates),

such as $$. A simple behavior consists of a combination

of these states using one or more combinations of oper-

ators and constraints. We assume a constant processing

time for all operators and constraints. Then, given an

input of N events, processing a state proposition can in-

volve two important operations which influence the run-

time: (i) querying using the state expression and (ii) pro-

cessing the results of the query if any. In the case of

cStates and iStates, there is exactly one query made, and

it generates at most N responses. Thus, the worst case

for processing thoseN responses isO(N). In the case of
a dstate, given N events, there are N queries to be made

and in the worst case every query may return O(N) re-
sults that have to be processed. Thus, processing depen-

dent states involves a worst case of O(N2) operations.
We present our performance results in Section 6.

5 Case Studies

In this section, we evaluate the utility of our semantic

framework by applying it to five different analysis sce-

narios: (a) confirming a hypothesis on collected net-

work traces, (b) specifying expected system behavior

during network experimentation, (c) modeling worm be-

havior as an example security threat, (d) modeling dy-

namic change, and (e) rapidly composing models to cre-

ate higher-level behaviors. We present detailed explana-

tion of input, the behavior model and analysis output for

the first two cases. Due to space constraints, we briefly

discuss the remaining three cases with their correspond-

ing behavior models, demonstrating features of our se-

mantic analysis framework.

5.1 Modeling Hypothesis

Researchers frequently need to validate hypothesis or test

results presented by other researchers. We emulate one

such scenario by validating the results presented by Hus-

sain et al. [5] to demonstrate how behavior models can be

rapidly created to reproduce results. We also discuss the

syntax involved in writing a complete behavior model.

In the above referenced paper, a threshold-based

heuristic was presented to identify DDoS attacks in

traces captured at an ISP. Attacks on a victim were iden-

tified by testing for two thresholds on anonymized traces:

(a) the number of sources that connect to the same des-

tination within one second exceeds 60, or (b) the traffic

1. [header]
2. NAMESPACE=NET.ATTACKS
3. NAME=DDOS_HYP
4. QUALIFIER={}
5. IMPORT=NET.BASE_PROTO.IPFLOW
  
6. [states]
7. sA=IPFLOW.ip_s2d()
8. sB=IPFLOW.ip_s2d(dip=$sA.dip)
                  
9. [behavior]
10.hyp_1=(sA)[bcount=1] ~>[<=1s] (sB)[bcount>=59]
11.hyp_2=(sA)[rate > 40000]

12.[model]
13.DDOS_HYP(timestamp,sip,dip,etype)= (hyp_1 or hyp_2)

(a) DDOS HYP models two thresholds for detecting DDoS attacks.

Summary : DDOS_HYP_hyp1
========================
Total Matching Instances: 2
Instance : 1 of 2 (Total Event Count: 60)
--------------------------------------------------------
  timestamp   |   sip        |   dip        |  etype
--------------------------------------------------------
                 State Definition: sA
  1025390156  |201.199.184.56|87.231.216.115| PKT_ICMP

State Definition: ~> [<= 1 s ] sB [ ecount >= 59 ]
  1025390156  |201.199.184.56|87.231.216.115| PKT_ICMP
  1025390156  |201.199.184.56|87.231.216.115| PKT_ICMP
<truncated output containing remaining 57 events>

Instance : 2 of 2 (Total Event Count: 60)
--------------------------------------------------------
  timestamp   |   sip        |   dip        |  etype   
--------------------------------------------------------
                 State Definition: sA                   
  1025390157  |53.232.170.113|87.134.184.48 | PKT_ICMP  

State Definition: ~> [<= 1 s ] sB [ ecount >= 59 ]
  1025390157  |33.138.213.170|87.134.184.48 | PKT_ICMP  
  1025390157  |33.138.213.181|87.134.184.48 | PKT_ICMP  
<truncated output containing remaining 57 events>

(b) Behavior instances satisfying the DDOS HYP model.

Figure 4: Behavior model for confirming a hypothesis and correspond-

ing behavior instances from network traces satisfying the model.

rate exceeds 40,000 packets/sec. We demonstrate the ad-

vantages of behavior model-based analysis by defining

a model to test for the two heuristics listed above using

10 seconds of the trace file containing the start of an at-

tack. We normalize the packet traces to 142,530 PKT IP

events.

Referring to the model script shown in Figure 4(a),

lines 2–5 define the model header. Line 4 does not

specify any qualifying conditions, that is, filters, for the

events it can process. Line 5 imports the IPFLOW model

from the knowledge base. Lines 7–8 define the neces-

sary state propositions. Line 7 defines sA, a simple state

which just captures an IP packet from some source to

destination. Line 8 defines a state sB with a dependency

that its dip has to be equal to the dip in sA. State sA

thus provides a context for sB.

Line 10 expresses the first hypothesis that there should

be more than 60 sources connecting to the same destina-

tion for an attack. We apply the operator to denote that

we expect sA to occur before sB. The behavior constraint

bcount (refer Section 3.4) applied to sA limits number of

events returned to 1, whereas it is applied to sB so that at-

least 59 events should occur since the event matching sA

occurred. Additionally, the operator constraint [<=1s]

10
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(a) DNS Kaminsky experiment setup.
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(b) Set of possible experiment behaviors.

1. [header]
2. NAMESPACE = NET.ATTACKS
3. NAME = DNSKAMINSKY
4. QUALIFIER = {etype='PKT_DNS'}
5. IMPORT = NET.APP_PROTO.DNSREQRES

6. [states]
7. # Attacker to victim query
8. AtoV_query = DNSREQRES.dns_req()

9. # Victim to real ns query
10. VtoR_query= DNSREQRES.dns_req(sip=$AtoV_query.dip,
  dnsquesname=$AtoV_query.dnsquesname)

11.# Real NS to victim real response
12.RtoV_resp = DNSREQRES.dns_res($VtoR_query, 

      dnsauth=fakens.fake.com)

13.# Attacker to victim CORRECT fake response 
14.AtoV_resp = DNSREQRES.dns_res($VtoR_query,
                      dnsauth=realns.eby.com) [bcount>=1] 

15.# Attacker to victim INCORRECT response case
16.AtoV_noresp = DNSREQRES.dns_res($VtoR_query, 
17.                dnsid != $VtoR_query.dnsid) [bcount>=1]  
     

18.[behavior]
19.initial_query = (AtoV_query ~> VtoR_query)
20.b_1 = initial_query~>RtoV_resp ~> (AtoV_resp xor         
                                       AtoV_noresp)  
21.b_2 = initial_query ~> AtoV_noresp ~> RtoV_resp
22.b_3 = initial_query ~> AtoV_resp ~> RtoV_resp

23.[model]
24.FAILURE(sip,dip,sport,dport,dnsid,dnsauth) = b_1 or b_2
25.SUCCESS(sip,dip,sport,dport,dnsid,dnsauth) = b_3

(c) DNSKAMINSKY models complete experiment behavior.

Figure 5: Experiment setup, possible set of behaviors and corresponding behavior model for validating a networked experiment.

binds sA and sB to occur within a second in the order

specified.

Line 11 defines the second hypothesis that requires

that the packet rate be ≥ 40,000 by using the rate con-

straint on state proposition sA. Lastly, line 13 defines

the behavior model DDOS HYP which asserts that either

hyp 1 or hyp 2 or both are valid. The four attributes

timestamp,sip,dip,etype are reported in the final

output.

When the model is applied to the packet trace, it pro-

duces an output as shown Figure 4(b). We see that there

are two instances reported matching hypothesis hyp 1

both with 60 events within a 1 second interval. The out-

put also shows the corresponding state or behavior def-

initions matching the following events. The two desti-

nation IPs that are under attack are 87.231.216.115 and

87.134.184.48. This output is consistent with the find-

ings reported in the original paper [5].

This example clearly demonstrates the ease with

which simple hypotheses could be modeled and vali-

dated. The original authors wrote about 2,000 lines of

C code to identify attacks. The same validation was ex-

pressed in about five lines as a behavior model. Addition-

ally, this model can now be shared and easily modified

and extended.

5.2 Modeling Experiment Behavior

Running experiments on a testbed, such as DETER [2],

is challenging since it is hard to ascertain the validity of

the experiment manually. With our framework, a model

can be used to capture the “definition of validity” which

includes possible successful and failed behaviors for an

experiment and then confirmatory analysis can verify if

it was met. Such a model can also be easily shared with

other experimenters promoting sharing and reuse of ex-

periments.

We present an experiment emulating Dan Kaminsky’s

popular DNS attack [7] using the metasploit [11] frame-

work. Referring to Figure 5(a), the attackers objective is

to poison the cache of the victimns so that any requests to

eby.com are redirected to a fake nameserver (fakens) in-

stead of the real nameserver (realns). We refer the reader

to [7] for a detailed understanding of the attack. Since the

attack exploits a race condition, our experiment setup has

to permit successful occurrences as well as failed occur-

rences of the attack.

Figure 5(b) captures the experiment behavior as a tree

of possibilities where the nodes are the experiment states

and the paths connecting the states are possible experi-

ment behaviors. These states are not exhaustive but suffi-

cient to capture most of the semantics of the experiment.

Specifically, we see that there are three possible behav-

iors that can lead to failures and one behavior that can

lead to success.

The behavior model script is shown in Figure 5(c).

Lines 2–4 define the model as DNSKAMINSKY over events

of type PKT DNS. Line 5 imports the DNSREQRES model

that already defines states and behaviors relevant to the

DNS protocol.

Lines 7–17 define five different states that are relevant

to the experiment. Line 8 defines the first DNS query

from attacker to victim and provides a context for further
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Summary : DNSKAMINSKY_SUCESS
========================
Total Matching Instances: 1
-----------------------------------------------------------------------------------------
  etype   | timestamp  | sip       |  dip     | sport | dport | dnsid |   dnsauth    
-----------------------------------------------------------------------------------------
  PKT_DNS | 1275515488 | 10.1.11.2 | 10.1.4.2 | 38323 |  53   | 59439 |              
  PKT_DNS | 1275515488 | 10.1.4.2  | 10.1.6.3 | 32778 |  53   | 59439 |              
  PKT_DNS | 1275515488 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 59439 |fakens.fakeeby.com
  PKT_DNS | 1275515488 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 59439 |realns.eby.com
----------------------------------------------------------------------------------------- 
Summary : DNSKAMINSKY_FAILURE
========================
Total Matching Instances: 622

<truncated output>
-----------------------------------------------------------------------------------------
  etype   | timestamp  | sip       | dip      | sport | dport | dnsid |   dnsauth    
-----------------------------------------------------------------------------------------
  PKT_DNS | 1275515486 | 10.1.11.2 | 10.1.4.2 |  6916 |  53   | 47217 |              
  PKT_DNS | 1275515486 | 10.1.4.2  | 10.1.6.3 | 32778 |  53   | 15578 |              
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 15578 |realns.eby.com
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 47217 |fakens.fakeeby.com
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 47217 |fakens.fakeeby.com
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 47217 |fakens.fakeeby.com
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 47217 |fakens.fakeeby.com
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 47217 |fakens.fakeeby.com
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 47217 |fakens.fakeeby.com
  PKT_DNS | 1275515486 | 10.1.6.3  | 10.1.4.2 |  53   | 32778 | 47217 |fakens.fakeeby.com
-----------------------------------------------------------------------------------------
  PKT_DNS | 1275515486 | 10.1.11.2 | 10.1.4.2 | 28902 |  53   | 50921 | 
<truncated output>             
 

Figure 6: Behavior instances satisfying the DNSKAMINSKY model.

states. Line 10 defines a query from the victim to real

nameserver by requiring that the source IP address of this

query be same as the destination IP address of the previ-

ous query and the DNS questions of both states be iden-

tical. This makes sure that the forwarded query by the

victim nameserver is the same as the one received. Line

12 defines the response from the real nameserver to the

victim nameserver. The response is related to the request

in line 10 by using the state identifier of the query state

VtoR query. To specifically distinguish this response

from the attacker’s response, we mention the value of the

dnsauth attribute that is expected in the response. There

are two cases for specifying the attacker’s response. Line

14 defines the attacker’s response same as the real name-

server response except that we mention the fake name-

server as value of the dnsauth attribute. Line 16 defines

the case where the attacker’s response is incorrect due

to a wrongly guessed DNS transaction id. The bcount

constraint specifies that any number of responses can be

matched since the attacker can send multiple forged re-

sponses. Attribute values not defined in the above states

default to their definitions in DNSREQRES.

Lines 19–22 specify four possible behaviors corre-

sponding to the four different paths in Figure 5(b). Line

20 uses the xor operator to merge two behavior paths.

The other behaviors use the  operator to capture the

causation between the states. Finally, the behavior model

is defined in the model section using FAILURE and

SUCCESS behaviors. Referring to Figure 5(b), we see

that b 1 and b 2, where b 1 is a composite of two be-

haviors, lead to FAILURE and b 3 leads to SUCCESS.

By default, the framework composes the final model by

or’ing the behaviors specified in the model section.

After running the experiment and capturing DNS

packets, we normalize the last 10,000 packets to

PKT DNS events since they contain a successful attack

along with failures representative of rest of the capture.

The framework outputs one SUCCESS instance and 622

FAILURE instances as shown in Figure 6.

1. scan_A     = {etype=SCAN, src=$infect_A.host, dst=$$}
2. infect_A   = {etype=INFECT, host=$scan_A.dst}
3. single_spread  = (scan_A ~> infect_A)
4. spread_chain   = (single_spread ~> spread_chain)
5. WORMSPREAD(host) = (spread_chain)

(a) Modeling the worm infection chain over IDS alerts.

1. IMPORT = NET.APP_PROTO.HTTP
2. http_pkt     = HTTP.HTTP_PKT(sip=$$, dip=$$)
3. attack_event = {etype=DOSATTACK,src=$$,dst=http_pkt.dip}
4. http_stream_at100 = ((http_pkt)[rate=100])
5. http_stream_below50  = ((http_pkt)[rate=0:50])
6. attack_start=(http_stream_at100 ew[<= 5s](attack_event))
7. DYNAMIC_CHANGE = (attack_start ~> http_stream_below50)

(b) Modeling change in rate of packet streams.

1. IMPORT = NET.ATTACKS.DNSKAMINSKY,NET.ATTACKS.WORMSPREAD
2. worm_attack= WORMSPREAD.single_spread(host=$$)
3. dns_attack = DNSKAMINSKY.SUCCESS(sip=$worm_attack.host)
4. COMBINED_ATTACK = (worm_attack ~> (dns_attack))

(c) Modeling an attack by composing WORMSPREAD and
DNSKAMINSKY models.

Figure 7: Excerpts from behavior models for (a) modeling a security

threat, (b) modeling a dynamic change and (c) composing higher-level

models. We refer the reader to the framework webpage [17] for details.

This case study demonstrates the ease with which the

full system behavior was semantically modeled at the

level of user’s understanding. Additionally, the model

was composed using existing models from the knowl-

edge base, extended with user’s context-specific values

for attributes and then validated.

5.3 Modeling a Security Threat

In this case study, we define a behavior model of a typical

worm spread detected by IDS alerts collected from mul-

tiple hosts. Assume a network with IDSes on each host

reporting two types of timestamped alerts: a SCAN alert

when a scan is detected by a host and an INFECT alert

when the host is found infected. Assume an event log

created by normalizing the alerts to two types of events

with their corresponding attributes. Given the event log,

our objective here is to define a behavior model to extract

all possible infection chains of any length and report the

hosts involved.

We model the worm spread behavior as shown

in Figure 7(a) in two stages; by first defining a

single spread behavior using events from a sin-

gle host and then defining the spread chain as a

chain of related single spread occurrences. The

single spread behavior, concerning a vulnerable host

A, is a sequence of two dependent and casual events: (a) a

scan A event with its src attribute pointing to an earlier

infected host, followed by (b) an infect A event with

its host attribute the same as scan A.dst. A worm

spread chain (spread chain) is then simply defined by

a recursive occurrence of related single spread be-

haviors. Referring to the model, the forward-dependent

attribute src in the definition of scan A connects suc-

cessive single spread behaviors by requiring the src
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of the next scan to be the same as the previously infected

host. The forward-dependent attribute src is initialized

automatically the first time single spread is parsed by

considering it to be a dynamic ($$) variable. The next

iteration over spread chain then uses the values as de-

termined dynamically by single spread.

5.4 Modeling Dynamic Change

Dynamic changes are a fundamental characteristic of

networked and distributed environments. One example

of a dynamic change is the change in rate of a stream

of packets due to an anomalous condition such as a DoS

attack. Our objective in this case study is to model an

expected reduction in the rate of legitimate HTTP traffic

due to DoS attack on a server. Our raw data consists of

IDS DoS attack alerts and HTTP packets.

The DYNAMIC CHANGE model, containing only the

relevant aspects is described in Figure 7(b). Line 2 de-

fines a state capturing a HTTP packet between a source

and destination. Line 3 defines a state capturing a DoS

attack alert, additionally requiring the destination to be

same as the destination in the HTTP packet. Lines 4 and

5 describe the HTTP packet stream rates before and af-

ter the attack respectively. The change boundary is de-

fined by the attack event that is triggered once the

attack starts. Since attack event represents a single

event, it has the same starttime and endtime. Line 6 use

the ew (endswith) operator to define the attack start

condition, which specifies that the http stream at100

behavior end within five seconds of the attack event.

The DYNAMIC CHANGE model is then an assertion that

the HTTP stream rate reduces following the attack.

5.5 Composing Models

Our final case study demonstrates the ease of compos-

ing and extending existing models to define semantically

relevant higher-level behavior.

We combine our previously defined mod-

els DNSKAMINSKY and WORMSPREAD to create a

COMBINED ATTACK scenario as shown in Figure 7(c).

Line 2 captures the behavior where a worm infects a

host machine and scans and infects another host. Line

3 describes the behavior where the worm launches a

DNS Kaminsky attack on some DNS server from the

last infected host. We do not specify any server for the

DNS Kaminsky attack due to the abstractness of the

DNSKAMINSKY model which infers the destination dy-

namically. Line 4 is the final behavior model combining

both the attacks. In line 3, we only constrain the sip

and leave other attributes unspecified. This demonstrates

the ability to extend the imported models with only

the desired attribute values while leaving the others as

defined in the imported model.
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Figure 8: Plot of runtime against number of events for five types

of behavior complexity. Behaviors containing dependent value states

(dStates) result in quadratic complexity.

6 Performance Analysis

A common approach for semantic-level analysis involves

use of custom scripts or tools encoding context-specific

semantics. Since custom scripts and tools can be written

using a variety of programming and optimization tech-

niques, any evaluation of our generic framework against

them would be very subjective and thus flawed. Instead,

we choose to report the raw runtime performance of our

prototype implementation on five basic analyses tasks

over event datasets of increasing size.

The runtime performance of the framework depends

on the language constructs, input data, analysis algorithm

and implementation mechanisms used. Since our pri-

mary focus in this paper is on enabling semantic func-

tionality, we prototyped the framework in Python using a

SQLite database as backend for storing events. The input

events used were PKT DNS events collected for the case

study in Section 5.2. The performance analysis was con-

ducted on a laptop with an Intel Pentium-M processor

running at 1.86 GHz and with a memory of 2 GB.

We measure runtime as a function of two variables:

(a) the number of events input to the algorithm, (b) the

behavior complexity, defined as the processing complex-

ity of state propositions in a behavior formula. As dis-

cussed in Section 3.3, there are three types of state propo-

sitions based on attribute assignments; constant value at-

tributes denoted as cState, dependent value attributes de-

noted as dState, and dynamic attribute values denoted as

iState. These states can be combined to form five ba-

sic behaviors, each representing a basic semantic anal-

ysis task: b1 = (cState), represents extracting events

with known attributes and values; b2 = (iState), repre-

sents extracting events with particular attributes but un-

known values; b3 = (iState iState), represents extract-

ing causally correlated yet value-independent events; b4

= (iState  dState), represents extracting causally cor-

related and value-dependent events; and b5 = (iState 
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dState dState dState), represents extracting a long

chain of causal events. Although we limit our analysis

to the  operator, all operators incur uniform process-

ing overhead in the algorithm, thus resulting in similar

performance results. The chosen event set along with the

behaviors are representative of a worst-case input to the

framework. We measure the performance using above

behaviors over event sets in increments of 10,000 events.

We stop at the event set when runtime exceeds 60 min-

utes.

The results are averaged over three runs and are shown

in Figure 8. The plots for behaviors consisting of cStates

and iStates b1, b2 and b3 tend to be linear as discussed in

Section 4.4. One would expect that behavior b5, contain-

ing three dStates would show significantly higher run-

time than behavior b4 containing only one dState. Both

show quadratic performance, since, in a chain of depen-

dent states, the states further in the chain process lesser

events than states in front of the chain. We thus see that

runtime quickly becomes quadratic given a worst-case

set of events and behaviors containing dependent state

propositions. The current Python and SQLite-based im-

plementation also add penalty to the framework runtime.

We investigate these issues as part of our future work.

7 Conclusion and Future Work

In this paper, we presented a behavior-based semantic

analysis framework that allows the user to analyze data

at a higher-level of abstraction. Typically, system experts

rely on their intuition and experience to manually ana-

lyze and categorize scenarios and then hand-craft rules

and patterns for analysis. Hence due to the manual and

ad-hoc nature of this analysis process, there is limited

extensibility and composibility of analysis strategies. In

this paper we show that our approach is more system-

atic, can retain expert knowledge, and supports compos-

ing behaviors from existing models. We evaluated the

utility of our framework against five analyses scenarios

which demonstrated the ease with which a user’s higher-

level understanding of system operation was expressed

as behavior models over data.

Our future work includes investigating the scale and

efficiency issues that arise during processing large vol-

umes of data in both offline and real-time settings like in-

trusion detection. We will investigate stream-based SQL

query extensions [6] to improve performance. We will

also investigate extending our logic with existential and

universal quantifiers. Currently, our framework requires

a user to either manually specify behavior models or use

existing models from the knowledge base to explore data.

To further exploratory analysis, we would need to alert

users to interesting unanticipated behaviors. We are ex-

ploring data mining algorithms to automatically discover

and compose behavior models from data.

The fundamental goal of the behavior-based semantic

analysis framework is to introduce a semantic approach

to data analysis in networked and distributed systems re-

search and operations. We hope that this paper serves as

a catalyst for further research on semantic data analysis.
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