
 1 

  

Abstract— Authentication has been the 

mainstay of security for many decades and 

is an accepted means for achieving the end 

goal of authorization in security. Security 

researchers over the years have proposed 

several authentication systems like 

Kerberos [4], Andrew Secure RPC [6], 

Ottway-Rees [6], CCITT X.509 [6] and 

others. These have proven to be extremely 

robust and attacker safe for a lot of 

practical purposes inspite of the flaws found 

in them. Authentication protocols have 

traditionally based their threat models on 

the assumption that the end hosts are 

largely secure and have focused on handling 

attacks against the protocol on wire. 

Unfortunately, with the continuous rise in 

threats from rootkits, keyloggers and other 

exotic types of malware, the threat of the 

end host being easily compromised and 

modified is no more unreal. Such malware 

has the potential of hiding surreptitiously 

inside a system and stealing user credentials 

like keys and passwords, thus rendering the 

authentication services meaningless. 

Solutions don’t exist yet to address the 

above threats. Trusted Computing, an 

evolving computing paradigm, promises 

solutions to the above problems by 

providing a more secure and trusted 

environment for implementing such 

 

Arun Viswanathan is a graduate student in the 

Computer Science Department, University of Southern 

California, Los Angeles, CA 90089 USA, (e-mail: 

aviswana@usc.edu). 

protocols. The paper evaluates the 

authentication systems in the light of new 

threats and proposes solutions for 

addressing the same using trusted 

computing concepts. A brief discussion on 

problems and possible solutions for threats 

against authentication in ad-hoc networks is 

also presented at the end. The paper focuses 

merely on the functionality aspects and not 

on the performance implications of using 

trusted computing. 
 

Index Terms—Trusted Computing, 

Security, Authentication, Kerberos, Remote 

Attestation, Integrity Measurement, 

Trusted Platform Module, Malware. 
 

I. INTRODUCTION 

 

A. Problem scope and definition 

 

Eugene Spafford quotes [3]: 

 

“Using encryption on the Internet is the 

equivalent of arranging an armored car to 

deliver credit card information from someone 

living in a cardboard box to someone living on 

a park bench”. 

 

The above quote aptly describes the threat 

model our present computing environments are 

based on. A lot of work has been done on 

making the network secure but the hosts 

themselves are just like the cardboard box in 

the above quote. This is more so true of the 

Leveraging the Trusted Platform Module for 

improving authentication systems 

Arun Viswanathan 

Computer Science Department, University of Southern California 



 2 

current generation authentication protocols. 

The threat models that the authentication 

protocols are based on do not account for 

security of the end hosts and place an implicit 

trust in them. Unfortunately, this assumption is 

very trivially rendered useless today because of 

the wide scale proliferation of malware like 

rootkits, keyloggers and other exotic malicious 

code. These malicious programs propagate via 

common attack vectors like email and browser 

and install automatically without the users 

knowledge. Once active, these malware can 

surreptitiously steal personal information like 

keys and passwords thus rendering any form of 

authentication or external security devices 

useless. A hacker can then easily impersonate 

a legitimate user.  

 

Current solutions to tackle such threats rely on 

the user or the system administrator to 

configure the system securely, by selecting the 

right configurations and by keeping it up to 

date with the latest patches. Nevertheless, 

these solutions are very weak defenses against 

the growing sophistication of threats. A newly 

emerging computing paradigm called Trusted 

Computing promises to be atleast a pewter 

bullet if not a silver bullet in fighting these 

threats.  

 

Trusted Computing, developed by the Trusted 

Computing Group (TCG) [1], is a set of 

security guidelines to mitigate the risks of 

participating in an interconnected world while 

also ensuring interoperability and protecting 

privacy. It is an open, vendor-neutral, industry 

standard specification for trusted computing 

building blocks and software interfaces across 

multiple platforms. It provides a framework 

with a set of primitives like sealed storage for 

keys, tamper resistance and remote attestation 

for devices to interoperate in a secure and 

trusted manner. One such building block is the 

TPM or the Trusted Platform Module [2] 

which is a piece of hardware capable of doing 

encryption, decryption, key generation, secure 

key storage and hashing. As described in [11], 

the TCG trust model is based on establishing a 

common assurance root and function definition 

for these trust characteristics. The TCG 

Trusted Platform Module, or TPM, serves as 

the starting point, or root, for this transitive 

trust model. The TPM as Core Root of Trust 

for Measurement, or CRTM, can measure 

additional system attributes and then later 

verifiably report them as a basis for 

determining the overall trustworthiness of a 

platform. This paper explores the fundamental 

services provided by Trusted Computing to 

alleviate the threats. 

 

B. Contributions 

 

The paper leverages the Trusted Computing 

concepts and proposes solutions for the 

problems with authentication protocols in light 

of newer threats. There is currently no such 

reported work done in this area and hence the 

following objectives also are the novelties of 

the paper.  

a) Present a generic authentication model 

based on existing taxonomy of 

authentication protocols.  

b) Identify issues with current generation 

authentication protocols in the light of new 

and emerging threats. 

c) Identify existing services built using 

trusted computing concepts and propose 

new ones. The paper proposes a new 

service called “Secure Credential 

Caching” which can be used to thwart 

some of the threats presented.  

d) Propose solutions to the threats using 

Trusted Computing Services. 

e) Extend the discussion to authentication in 

wireless networks which are more 

pertinent to the current generation.  

The paper focuses only on the functionality 

aspects and not on the performance overheads 

induced by the solutions.  



 3 

C. Outline 

 

The remainder of this paper is organized as 

follows. Section II discusses existing 

authentication protocols and their weaknesses 

in general. Section III reviews the existing 

threat model used by the authentication 

protocols and proposes an enhanced threat 

model in the light of newer threats. Section IV 

discusses the Trusted Computing paradigm. 

Section V discusses services built using 

Trusted Computing concepts. Section VI 

discusses threat mitigation using the services. 

Section VII extends the discussion to 

authentication problems in adhoc networks and 

alludes to possible solutions using trusted 

computing. Section VIII concludes the paper 

with a discussion of risks involved and open 

issues.  

II. OVERVIEW OF AUTHENTICATION 

PROTOCOLS 

 

An authentication protocol is a sequence of 

message exchanges between principals i.e. 

communicating entities, which either 

distributes secrets to some of those principals 

or allows the use of some secret to be 

recognized [6]. Such information is then used 

for subsequent communication in either 

validating claims of interacting principals or 

for encryption or decryption of 

communication. This section discusses the 

taxonomy of authentication protocols, presents 

a generic model based on the taxonomy and 

concluding with a discussion of well known 

attacks on authentication protocols. 

 

A. A taxonomy of Authentication Protocols 

 

This section summarizes the classification 

presented in [6] and the reader is advised to 

read the original report and the related 

references cited in the report for a more 

detailed exposition to the taxonomy. Other 

types of classification, like the classification 

based on Public Key methods [12] were also 

studied, but this was chosen because of its 

generality.  

 

1. Symmetric Key Protocols without Trusted 

Third Party - examples: ISO Symmetric 

Key One pass Unilateral Authentication 

Protocol, Andrew Secure RPC protocol. 

2. Authentication using cryptographic check 

functions - examples: ISO one pass 

unilateral authentication with 

Cryptographic Check Functions. 

3. Symmetric Key Protocols involving 

Trusted Third Party - examples: Needham 

Schroeder protocol with conventional keys, 

Denning Saco protocol, Ottway-Rees 

Protocol, Yahalom, Wide Mouthed Frog 

Protocol. 

4. Signatures with conventional key 

encryption - example: Needham-Schroeder 

Signature Protocol. 

5. Symmetric Key Repeated authentication 

protocol - example: Kerberos V5. 

6. Public Key protocols without Trusted 

Third Party - examples: ISO public key 

one pass unilateral authentication 

exchange, Diffie Hellman Exchange. 

7. Public Key Protocols with Trusted Third 

Party - examples: Needham-Schroeder 

Public Key Protocol. 

8. Mutual Authentication Protocols – 

example: Splice/AS, CCITT X.509. 

9. Miscellaneous - example: Shamir Rivest 

Adleman Three pass protocol, Encrypted 

Key Exchange – EKE. 

 

B. A Generic Authentication Model 

 

Based on the above classification, the 

following authentication model is proposed 

which will be used as a reference throughout 

the paper.  The model consists of three 

components as shown in Figure 1.  

 



 4 

1. Client (C) - The client initiates the 

authentication sequence with either the AS 

or S to prove its identity.  

2. Server (S) – The server offers a particular 

service to clients and also verifies the 

identities of the clients connecting to it. 

3. Authentication Server (AS) – The 

Authentication Server is a Trusted Third 

Party trusted by both the client and server 

for facilitating the authentication. It may 

contain a repository of shared secrets 

shared between it and the client/server or it 

may also act as a certification authority for 

public key based systems.      

 
 

 
Figure 1 A Generic Authentication Model 

 

The lines connecting the components are used 

to indicate the communication channels 

carrying messages in either direction. The 

model can be used to represent interactions 

amongst any of the type of protocols listed 

above. For example, to model the Symmetric 

Key Protocols without Trusted Third Party 

only the client and server components along 

with the bidirectional messages need be used. 

To model Kerberos, the client, server and the 

authentication server are used but the 

interaction lines between the server and 

authentication server are removed.  

C. Known weaknesses and attacks on 

authentication protocols 

 

Authentication protocols have been subjected 

to a variety of attacks over time, both 

theoretical and practical. The summary of 

attacks presented here are applicable to a broad 

category of authentication protocols.   

 

1. Freshness Attack – As defined in [9],  a 

freshness attack occurs when a message (or 

message component) from a previous run 

of a protocol is recorded by an intruder and 

replayed as a message in the current run of 

the protocol. Denning and Sacco showed 

that the original Needham-Schroeder 

symmetric key protocol suffered from this 

flaw and suggested using timestamps to 

overcome the attack. 

2. Type Flaws – As defined in [9], a type flaw 

arises when the server accepts a message as 

valid but imposes a different interpretation 

on the bit sequence than the client who 

created it. This kind of flaw was found in 

the Andrew Secure RPC protocol and the 

Ottway-Rees protocol. The Andrew Secure 

RPC protocol had the nonce field and the 

key field of equal length which allowed an 

attacker to supply a nonce value as a key to 

the protocol thus leading to a potential 

compromise of the session. 

3. Multiciplicity Attacks – As defined in [8], 

in a multiplicity attack an intruder is able 

to replay a message so as to trick the 

recipient into thinking that the client is in 

fact trying to establish two (or more) 

simultaneous sessions. Its been shown that 

the Wide-Mouthed Frog Protocol, the 

Denning-Sacco Shared Key Protocol, 

CCITT X.509 and SPLICE/AS protocol all 

suffer from the above attacks. 

4. Implementation dependent attacks – The 

actual implementation of a particular 

protocol may affect the security of the 

protocol greatly. For example, choosing a 

Client 

(C) 

Sever 

(S) 

Auth 

Server 

(AS) 



 5 

method to generate nonces can lead to 

either random or predictable values. 

Similarly, improper use of encryption 

algorithms in the context of protocols can 

also lead to attacks. For example, Shamir 

et.al.’s work in [13] was used to show that 

an implementation flaw in WEP made the 

underlying RC4 protocol easily crackable 

and hence rendering the WEP encryption 

useless.  

5. Binding Attacks - Binding of a public key 

to its “correct” owner is of paramount 

importance in public key cryptography. A 

client using a server’s public key must be 

confident that the public key is really of the 

server and not of an intruder. The binding 

attack happens when an intruder fools the 

client to use its public key to encrypt the 

messages instead of the servers.  

 

III. THREAT MODEL FOR AUTHENTICATION 

PROTOCOLS 

 

This section discusses the existing threat 

models on which systems are based and 

proposes a revised threat model based on a 

study of the latest threats. 

 

A. Existing threat models and its weaknesses 

 

Based on the discussion above in section II, the 

existing threat model can be represented using 

Figure 2. The black ovals represent an intruder 

who is capable of taking over the 

communication channel between the hosts in 

the system using the attacks described above. 

All protocols till date have considered only 

this threat vector. It is assumed that the nodes 

in the system are implicitly protected by other 

outside means like access controls and the like.    

 

 

 
Figure 2 Existing Threat Model 

 

It is also known that protocols like Kerberos 

[4] depend heavily on the security of the 

Authentication Server to guarantee security. 

Compromise of the security server can 

compromise the whole Kerberos network as 

now the intruders have access to all the keys. 

The protocol implicitly assumes that the 

System Administrator of the system must have 

configured the AS securely using security best 

practices.  

 

As pointed out by Bellovin and Meritt in [10], 

the Kerberos protocol caches credentials 

(tickets) that are used during the authentication 

process. This caching makes Kerberos 

vulnerable on multi-user systems where a 

rogue user who manages to get a privilege 

escalation can compromise other user’s tickets. 

This threat is more so applicable in today’s 

environments due to the growth of malware 

like rootkits, trojans and various other exotic 

types of malicious code.  These malicious 

programs propagate via common attack 

vectors like email and web browser and install 

automatically without the users knowledge. 

Once active, these malware can surreptitiously 

steal keys, cached tickets and passwords thus 

rendering any form of authentication or 

Client 

(C) 

Sever 

(S) 

Auth 

Server 

(AS) Intruder Intruder 

Intruder 



 6 

external security devices useless as now any 

intruder can impersonate a legitimate user 

 

Also, Neuman [4] points out that the Kerberos 

system cannot prevent against password 

guessing attacks. A client computer infected 

with a keystroke logger can easily sniff out all 

users passwords. A hacker can then easily 

impersonate as a legitimate user on the 

network. The authentication system is trivially 

rendered useless because of the ease with 

which these malware can propagate and install.  

 

It can be seen that it is no safer for an 

authentication protocol to place implicit trust 

in the integrity of the end hosts. The following 

section revises the threat model to 

accommodate these latest and greatest threats.   

 

B. A revised threat model   

 

The revised threat model covering the threats 

presented in the previous section is shown in 

Figure 3. The model extends the threat 

boundary from the communication channels to 

the nodes in the network and does not place 

any implicit trust in them. The nodes are 

assumed to be vulnerable to intrusions inspite 

of the supposedly high levels of security 

hardening done on them by the system 

administrator.  

 

 
Figure 3 Revised Threat Model 

 

With this new threat model in mind, the 

following new threats emerge: 

1. Nodes can be easily compromised using 

innocuous attack vectors like email and the 

web browser. 

2. Malware like rootkits, trojans and 

keyloggers can be dynamically installed on 

a system without the knowledge of the user 

of the system. 

3. Trojans can be planted in trusted 

programs like syslogd to perform 

malicious activities.  

4. Malware has capability to sniff users 

passwords. 

5. Malware has the capability to sniff cached 

credentials used by the authentication 

protocols. 

6. Master keys or master passwords which 

are supposedly stored on secure areas of 

disk or memory are easily accessible to a 

malware as it has complete control of the 

operating system.  

7. Techniques like using timeouts for cached 

credentials can be tricky because any 

decent timeout value is good enough for a 

malware to finish its job. 
 

Intruder 

Intruder Intruder 

Client 

(C) 

Sever 

(S) 

 

Auth 

Server 

(AS) 
Intruder Intruder 

Intruder 



 7 

IV. THE TRUSTED COMPUTING PARADIGM 

 

Current solutions to tackle the new threats rely 

on the user or the system administrator to 

configure the system securely and by keeping 

it up to date with the latest patches. These 

defenses are nevertheless very weak against 

the growing sophistication of threats. A newly 

emerging computing paradigm called Trusted 

Computing promises to be atleast a pewter 

bullet if not a silver bullet to fight these 

threats. This section explains the trusted 

computing paradigm and explains how some 

of the features of trusted computing are used in 

practice. 

 

Trusted Computing (commonly abbreviated 

TC) is a technology developed and promoted 

by the Trusted Computing Group (TCG). In 

this technical sense, "trusted" does not 

necessarily mean the same as "trustworthy" 

from a user's perspective. Rather, "trusted 

computing" means that the computer can be 

trusted by its designers and other software 

writers not to run unauthorized programs [16].  

Trusted computing encompasses five key 

technology concepts, all of which are required 

for a fully trusted system [1]. 

1) Endorsement Key - The endorsement key is 

a 2,048-bit RSA public and private key 

pair, which is created randomly on the chip 

at manufacture time and cannot be 

changed. The private key never leaves the 

chip, while the public key is used for 

attestation and for encryption of sensitive 

data sent to the chip. 

2) Secure Input and Output- Secure input and 

output refers to a protected path between 

the computer user and the software with 

which they believe they are interacting. 

Secure I/O reflects a hardware/software 

protected and verified channel by using 

checksums to verify that the software used 

to do the I/O has not been tampered with. 

Malicious software injecting itself in this 

path could be identified.  

3) Memory curtaining / Protected execution – 

Memory curtaining extends the current 

memory protection techniques to provide 

full isolation of sensitive areas of memory 

— for example locations containing 

cryptographic keys. Even the operating 

system doesn't have full access to curtained 

memory, so the information would be 

secure from an intruder who took control 

of the OS. 

4) Sealed and Secure storage- Sealed storage 

protects private information by allowing it 

to be encrypted using a key derived from 

the software and hardware being used. This 

means the data can be read only by the 

same combination of software and 

hardware.  

5) Remote attestation- Remote attestation 

allows changes to the user's computer to be 

detected by authorized parties. It works by 

having the hardware generate a certificate 

stating what software is currently running. 

The computer can then present this 

certificate to a remote party to show that its 

software hasn't been tampered with. 

 

A few examples of systems built using trusted 

computing primitives are presented below. 

Research has been done on using the remote 

attestation feature of trusted computing to 

provide an attestation based policy 

enforcement for remote access to clients [6]. In 

this system, remote attestation is used to verify 

the client integrity properties and establish 

trust upon the client before allowing the client 

to remotely access the corporate network. In 

another instance, trusted computing principles 

of remote attestation and sealed storage have 

been applied to provide privacy protection to 

RFID enabled devices [7]. Remote attestation 

is used by readers to prove to concerned 

individuals that they are running a specific 



 8 

version of the reader software and that the 

RFID reader is not a compromised one.  

V. SERVICES USING TRUSTED COMPUTING  

 

This section starts by describing some low 

level TPM features and then explores various 

fundamental services that can be built upon 

these concepts. The services presented here 

are: Secure Credential Caching, Integrity 

Measurement and Remote Attestation.   

 

A. Basic TPM Services 

 

1. The TPM provides facility to create “non-

migratable” storage keys inside the TPM 

that can be used to encrypt objects.  

2. These storage keys can be created during 

TPM initialization for a particular OS or 

during application initialization. This key 

would be a child of the Storage Root Key 

which is a key per OS created in the TPM. 

3. The TPM provides a set of registers called 

PCR which are used to hold the results of a 

hash operation. These hashes are typically 

taken over executable code in a process 

defined as “measurement” [11].   

4. Additionally, the keys can be “sealed” by 

associating a set of PCR values with the 

keys. This makes sure that only the 

application that created the key can access 

it.  

5. Using such storage keys objects can be 

encrypted and then stored on disk. 

6. Accessing TPM objects can be done 

securely via authorization protocols like 

OIAP and OSAP defined by TCG [1] and 

details of which are not within the scope of 

this paper. 

 

B. Secure Credential Caching (SCC) 

 

Authentication systems use Credential Caching 

as a technique to speed up the protocol and 

free the users from supplying credentials 

frequently. The credentials are cached either 

on disk or on memory. Kerberos uses 

credential caching of tickets given by the 

Ticket Granting Server [4] for future use by 

the clients. A particular limitation of the 

Kerberos authentication system [4] as outlined 

in [10] is that Kerberos is vulnerable on multi-

user systems where a rogue user who manages 

to get a privilege escalation can compromise 

other user’s tickets. Though the tickets have a 

lifetime, given the increasing threats presented 

due to malware like rootkits, the caching of 

tickets in the clear presents a serious problem. 

One must note that the problem is not specific 

to Kerberos and the solution presented here 

applies to all applications that use cached 

credentials. 

 

Secure Credential Caching is a secure way of 

caching credentials aimed at deterring the 

threats presented by intrusive malware. Using 

the set of TPM features presented in section A, 

a secure credential caching scheme can be 

designed. The assumption here is that the 

cache is NOT persistent. A few modifications 

will be necessary to make it persistent. Cache 

management issues like timeouts and 

coherency remain unchanged. The only aspects 

of caching that are changed are insertion and 

removal from the cache. The Secure Credential 

Caching scheme can be presented in 3 stages 

as follows: 

 

1. Application Init 

a. When an application starts up it creates 

a new storage key within the TPM 

using a TPM Authorization Protocol.  

b. The protocol allows the application to 

associate a passphrase (say P) with the 

newly created key.  

c. Additionally the key is sealed by 

associating the hash of the executable 

with the key. The hash is stored in the 

PCR. This procedure is performed by 



 9 

the loader that loads the application. It 

is assumed that the loader is trusted.  

d. Every time the application opens a 

session with the TPM to perform 

operations it has to provide the correct 

passphrase to the TPM. The TPM also 

checks that the PCR values are correct 

for the operation to succeed. 

 

2. Object Insertion 

a. Application creates a secure session 

with the TPM using an authorization 

protocol. A pass phrase is required for 

accessing the TPM key along with the 

correct state of the PCR registers. This 

makes sure that only the valid 

application can access the key and not 

any malware.  

b. Application loads the required storage 

key pair into the TPM. 

c. The credential to be cached is sent to 

the TPM to be encrypted with the 

loaded key handle.  

d. The TPM uses the public key to 

encrypt the credential.  

e. The encrypted blob is returned by the 

TPM to the application. 

f. The application can now store the blob 

either in file or memory.  

 

3. Object Removal 

a. Application creates a secure session 

with the TPM using an authorization 

protocol. A pass phrase is required for 

accessing the TPM key along with the 

correct state of the PCR registers.  

b. Application loads the required storage 

key pair into the TPM. The TPM 

accepts this only if the previous step 

succeeds. 

c. The blob to be decrypted is sent to the 

TPM with the loaded key handle.  

d. The TPM uses the private key to 

decrypt the blob.  

e. The decrypted blob is returned by the 

TPM to the application. 

 

The advantages of the Secure Credential Cache 

are as follows: 

1. As the objects are always kept encrypted 

on disk or memory other processes cannot 

access those credentials without the 

knowledge of key.  

2. As the key is sealed, a user cannot bootup 

from other OSes to access the keys. 

3. Rootkits running in kernel can manipulate 

memory easily but because the cache 

objects are now stored encrypted the 

rootkit cannot read the credentials. 

4. The TPM transaction is always authorized 

only after proper pass phrase associated 

with the key is provided. Also, the state of 

the PCRs has to be correct for the key to be 

released. Thus, rogue processes cannot 

access the keys arbitrarily. 

 

C. Integrity Measurement 

 

As defined in [11], the integrity of a program 

is a binary property that indicates whether the 

program and/or its environment have been 

modified in an unauthorized manner. Such an 

unauthorized modification may result in 

incorrect or malicious behavior by the 

program, such that it would be unwise for a 

remote entity to communicate with it. The 

Trusted Computing Group (TCG) has defined 

a set of standards [1] to take integrity 

measurements of a running system and store 

the result in a separate trusted coprocessor i.e. 

the TPM. The state of the TPM cannot be 

presumably compromised by a potentially 

malicious host system. This mechanism is 

called Trusted Boot.  

 

The way Trusted Boot works is as follows:  



 10 

1. On system power up, the control is first 

transferred to the TPM. 

2. The TPM measures the BIOS by 

computing a SHA1 secure hash over its 

contents and protects the result by using 

the TPM. 

3. This procedure is then applied recursively 

to the next portion of code until the OS has 

been bootstrapped.  

4. This initial measurement is stored as the 

first entry in the measurement list (Fig.4).  
 

It is the duty of the operating system to then 

take measurements of code that it loads. 

Researchers from IBM [11] have defined an 

Integrity Measurement Architecture (IMA) for 

the Linux 2.6 series of kernels. The 

architecture defines how the measurements are 

taken after the operating system has been 

bootstrapped. IMA measures the following: 

a. Kernel modules  

b. Executables and shared libraries  

c. Configuration files  

d. Other important input files that affect trust 

into run-time software stack, e.g., bash 

command files, Java Servlets, and java 

libraries.  

 

All the individual measurements are stored in a 

measurement list [Fig. 4] maintained by the 

kernel. Additionally, the TPM takes a SHA1 

over the measurement list and keeps it in a 

TPM PCR register. This is to detect illegal 

modifications to the measurement list itself.   

 

 
Figure 4 Sample Measurement List (from [11]) 

The IMA [11] ensures the following about the 

measurements:  

a. Fresh and complete, i.e., includes all 

measurements up to the point in time when 

the attestation is executed, 

b. Unchanged, i.e., the fingerprints are truly 

from the loaded executable and static data 

files and have not been tampered with. 
 

D. Remote Attestation 

 

TPM-based attestation represents a powerful 

tool for establishing the trust attributes of a 

system. Attestation based information about 

the device hardware, firmware, operating 

system, and applications can all be 

dynamically assessed to determine if the 

system should be trusted prior to granting a 

privilege (network / resource access, service, 

etc). Remote attestation relies on the Integrity 

Measurement Architecture for reporting the 

correct measurement values. 

 

The Remote Attestation process as defined in 

[11] works as follows: 

1. The challenging party requests the set of 

PCR values that define the state of the 

application.  

2. The attested system first validates the 

authorization of the challenger and then the 

attested system returns its current list of 

measurements (in the order they where 

collected) and a quote from its TPM. 

3. The TPM will quote its PCR registers by 

signing them with a 2048bit RSA signature 

key that was created inside the TPM and to 

which the public key was securely certified 

as belonging to this TPM.  

4. On receipt of the PCR values and the quote 

the verifier determines i) whether the 

quoted PCR values are tampered with or 

not, and ii) whether the quoting TPM is 

actually the one of the attested system.  

5. The verifier then computes calculates the 

boot aggregate by computing SHA1 (PCR0 



 11 

|| … || PCR7). This is the step which 

verifies the boot upto the operating system. 

6. It then compares it to the first measurement 

of the measurement list, which is supposed 

to be exactly this boot aggregate. If they 

don’t match, the attestation fails.  

7. For the stages above the operating system, 

it recalculates virtually the PCR value for 

the runtime measurements in the 

measurement list as follows: 

a. virtPCR=0  

b. Let M
 

= value from list (initial 

value = boot aggregate)  

c. virtPCR := SHA1(virtPCR || M) 

d. Continue with the next 

measurement until the 

measurement list is consumed.  

8. The resulting value in virtPCR must now 

match the value of the signed TPM PCR 

that was used by the attested system to 

protect the integrity of the measurement 

list.  

9. If the values don’t match, then the 

measurement list must be assumed 

tampered and the attestation fails. This can 

happen if the attested system is 

compromised and tries to cheat.  

VI. MITIGATING THREATS USING TRUSTED 

COMPUTING 

 

The previous section developed three critical 

services using trusted computing and showed 

how these services are implemented. This 

section utilizes the above services to propose 

solutions to the threats that were outlined in 

section III. Existing Authentication protocols 

need to embed the services provided by TC 

into their framework to make sure that they are 

protected from the latest threats. The solution 

here is presented with respect to Kerberos but 

it applies equally well to others.  

 

It is assumed that all the nodes shown in Fig. 1 

have now a TPM embedded within them. The 

modified Kerberos protocol is now as follows:  

1. The AS, C and S all run trusted software 

i.e. software whose measurement lists are 

well known to each other in advance.   

2. The AS, C and S all boot up in a trusted 

fashion. The respective TPM’s store the 

integrity measurements of all the software 

loaded using the Integrity Measurement 

Architecture.  

3. When the client communicates to the AS 

for a ticket, the AS remotely attests the 

client to verify that the client is indeed a 

trusted unmodified client.  

4. The client then has the option of remotely 

attesting the AS to make sure that the AS is 

a real one and an unmodified one. This 

step also thwarts Man-In-The-Middle type 

of attacks because if an intruder tries to 

impersonate an AS, the client will know 

immediately. 

5. The client may then additionally contact 

another AS server called TGS in the case 

of Kerberos for getting a new ticket.  

6. Kerberos caches this ticket into its Secure 

Credential Cache. The Secure Credential 

Cache will make sure that the tickets are 

accessible only to the valid application and 

not to a malware. Even if the tickets are 

persistently cached on disk they cannot be 

accessed by booting into any other OS.  

7. The protocol then proceeds as normal and 

the client can now talk to the server. The 

client and the server can also remotely 

attest each other additionally to make sure 

that they are talking to valid entities.  

8. Password or key sniffers will be thwarted 

because the objects are stored sealed in the 

secure credential cache and only valid 

applications can access those.   

9. On the AS side, the AS can store all its key 

database by sealing keys using the TPM 

such that only it has access to the keys.  

 



 12 

VII. THREATS AND SOLUTIONS FOR 

AUTHENTICATION IN AD-HOC NETWORKS 

 

This section takes a quick detour into the 

emerging area of Wireless ad-hoc Networks 

where trusted computing can play a very major 

role in addressing issues related to authenticity 

of devices. It just briefly alludes to the 

possibility of using Trusted Computing to 

establish greater levels of trust between the 

devices in an ad-hoc network using ideas 

developed throughout the paper.  

 

As stated in [12], from a security standpoint, 

ad hoc networks face a number of challenges. 

The devices that form the ad-hoc network have 

to interact and cooperate with each other in 

various ways to accomplish a task. Some 

devices may route data packets to other nodes 

or some may even act as data aggregators for 

other devices. The broadcast nature of the 

transmission medium and the dynamically 

changing topology add even more 

complications. Furthermore, the reliance on 

node collaboration as a key factor of network 

connectivity presents another obstacle. Rogue 

nodes induced by an attacker in such a network 

can sabotage the operations of the whole 

network rendering it useless.  
 

As discussed in [12], in order to provide 

network security, authentication as such 

becomes the cornerstone service because it 

helps the nodes to trust each other before 

communicating. As discussed throughout the 

paper, authentication built on top of trusted 

computing services provides higher degrees of 

assurance. Some of the ideas discussed in this 

paper are applicable directly to this domain.  

 

For example, the devices within an ad-hoc 

network can be equipped with tamper resistant 

TPM modules each containing its unique 

Endorsement Key which would identify every 

device on the network. Remote attestation can 

be then used by devices to determine trusted 

vs. untrusted nodes before transferring 

sensitive data. A remote management station, 

if possible, can also be used to continuously 

poll the devices to know their current 

measurements and thus detect rogue nodes.  

VIII. END NOTES AND CONCLUSIONS 

 

Trusted computing is still a very nascent 

technology and not ready to be consumable by 

the masses. The whole premise of “Trust” is 

based on the Tamper Resistance feature of the 

TPM. System designers who use trusted 

computing to propose solutions must make 

sure that their systems fail-safe in the event 

that the TPM is compromised.  

 

A caveat in the measurement technology is that 

that measurements are one-time and there is a 

chance that the system might get infected after 

taking the measurements. Also, the 

measurements are always taken by the 

previous stage which loads the application. If a 

running application gets compromised by 

buffer overflows then the measurement would 

not be able to record that. This is still an open 

area of research. As pointed out earlier in the 

paper, performance overheads introduced by 

trusted computing can be significant and 

careful optimizations are required. This is 

another active area of research.  

 

The paper started out with a Eugene Spafford 

quote alluding to the pitfalls in the present day 

authentication protocols. The current 

generation threats were analyzed and the 

authentication protocol threat model was 

revised in the light of the new threats. Three 

key trusted computing services were discussed 

to mitigate the threats in authentication 

protocols. Hopefully, the paper has 

demonstrated the potential of the trusted 

computing paradigm to thwart next-generation 

threats for authentication protocols.       



 13 

REFERENCES 

[1] Trusted Computing. 

https://www.trustedcomputinggroup.org/h

ome  

[2] Trusted Platform Module. 

https://www.trustedcomputinggroup.org/s

pecs/TPM 

[3] Eugene Spafford’s Analogies. 

http://homes.cerias.purdue.edu/~tripunit/s

paf-analogies.html 

[4] J. G. Steiner, B. C. Neuman, and J. I. 

Schiller. Kerberos: An authentication 

service for open network systems. In 

Proceedings of the Winter 1988 Usenix 

Conference, pages 191-201, February 

1988 

[5] Michael Burrows, Martin Abadi, and 

Roger Needham. A Logic of 

Authentication. Technical Report 39, 

Digital Systems Research Center, 

February 1989. 

[6] J. Clark and J. Jacob. A survey of 

authentication protocol literature: Version 

1.0. Available via 

http://www.cs.york.ac.uk/jac/papers/ 

drareview.ps.gz, 1997. 

[7] R. M. Needham and M. D. Schroeder. 

Using encryption for authentication in 

large networks of computers. 

Communications of the ACM, 

21(12):993--999, 1978. 

[8] G. Lowe. A family of attacks upon 

authentication protocols. Technical 

Report 1997/5, Department of 

Mathematics and Computer Science, 

University of Leicester, 1997  

[9] J A CLARK and J L JACOB, Attacking 

Authentication Protocols, High Integrity 

Systems 1(5):465-474, August 1996.  

[10] S. M. Bellovin and M. Merritt. 

Limitations of the Kerberos 

Authentication System. In Proc. of the 

Winter 1991 USENIX Conference, pages 

253--267, 1991 

[11] Sailer, R., Zhang, X., Jaeger, T., van 

Doorn, L. Design and Implementation of a 

TCG-based Integrity Measurement 

Architecture. Proceedings of the 13th 

USENIX Security Symposium, San 

Diego, CA, August 2004. 26 

[12] Nidal Aboudagga, Mohamed Tamer 

Refaei, Mohamed Eltoweissy, Luiz A 

DaSilva, Jean-Jacques Quisquater, 

Authentication protocols for ad hoc 

networks: Taxonomy and research issues, 

Proceedings of the 1st ACM international 

workshop on Quality of service & security 

in wireless and mobile networks, October 

2005 

[13] S. Fluhrer, I. Mantin, and A. Shamir. 

Weaknesses in the key scheduling 

algorithm of RC4. In Eighth Annual 

Workshop on Selected Areas in 

Cryptography, Toronto, Canada, Aug. 

2001. 

[14] R. Sailer, T. Jaeger, X. Zhang, and L. van 

Doorn Attestation based policy 

enforcement for remote access. In      

Proceedings of ACM Conference on 

Computer and      Communications 

Security (CCS), Oct. 2004. 

[15] David Molnar, Andrea Soppera, and 

David Wagner.       Privacy For RFID 

through Trusted Computing. WPES       

2005, November 7, 2005. 

[16] Trusted Computing -        

http://en.wikipedia.org/wiki/Trusted_Com

puting 

 

 


